Files
csyba/compute_ratings.py
Anthony Correa c541c3fc51 feat(cli): migrate build_season_schedule and compute_ratings to typer CLI
- add typer-based CLI to build_season_schedule.py for structured option handling
- refactor compute_ratings.py to remove argparse and support typer CLI
- improve typing and option descriptions in compute_ratings.py main function
- add .gitignore entry for __pycache__
- add requirements.txt with dependencies for the project
2025-08-29 16:14:50 -05:00

228 lines
9.6 KiB
Python

#!/usr/bin/env python3
"""
Rank baseball teams from a season_schedule.csv that has columns:
date_local,time_local,home_slug,home_instance,home_id,home_name,
away_slug,away_instance,away_id,away_name,home_runs,away_runs,
winner_slug,winner_instance,winner_id,loser_slug,loser_instance,loser_id,
location,status,game_id,source_urls
Output CSV columns (one row per team):
Team, GP, W, L, T, WinPct, RS, RA, RunDiff, PythagoreanWinPct,
MasseyRating, EloRating, StrengthOfSchedule, CompositeRating
Defaults:
- Team identity uses *_name; switch to slugs with --team-id slugs
- Pythagorean exponent = 1.83
- Massey caps margins at 8 runs and subtracts estimated home-field runs
- Elo: start 1500, K=24, home bonus H=30, margin factor ln(|m|+1) capped at 2.0
- Elo averaged over 20 random shuffles (reduces order dependence)
"""
from __future__ import annotations
import math
import numpy as np
import pandas as pd
import typer
def load_games(
inp: str,
team_id: str = "names",
final_status: str | None = None,
) -> pd.DataFrame:
df = pd.read_csv(inp)
# Choose identifiers
home_id_col = "home_name" if team_id == "names" else "home_slug"
away_id_col = "away_name" if team_id == "names" else "away_slug"
for c in [home_id_col, away_id_col, "home_runs", "away_runs"]:
if c not in df.columns:
raise ValueError(f"Missing required column: {c}")
# Optional status filter (helps exclude postponed/canceled)
if final_status is not None and "status" in df.columns:
df = df[df["status"].astype(str).str.lower() == str(final_status).lower()]
# Keep only games with numeric scores
df = df.copy()
df["home_runs"] = pd.to_numeric(df["home_runs"], errors="coerce")
df["away_runs"] = pd.to_numeric(df["away_runs"], errors="coerce")
df = df.dropna(subset=[home_id_col, away_id_col, "home_runs", "away_runs"])
# Parse datetime (robust to missing either field)
date = pd.to_datetime(df.get("date_local", pd.NaT), errors="coerce")
time = pd.to_datetime(df.get("time_local", pd.NaT), errors="coerce").dt.time
# Combine when possible
dt = date
if "time_local" in df.columns:
# build datetime only where both present
dt = pd.to_datetime(
date.dt.strftime("%Y-%m-%d").fillna("") + " " +
pd.Series(time).astype(str).replace("NaT",""),
errors="coerce"
)
df_out = pd.DataFrame({
"Date": dt,
"HomeTeam": df[home_id_col].astype(str),
"AwayTeam": df[away_id_col].astype(str),
"HomeRuns": df["home_runs"].astype(int),
"AwayRuns": df["away_runs"].astype(int),
})
df_out["Margin"] = df_out["HomeRuns"] - df_out["AwayRuns"]
df_out["Result"] = np.where(df_out["HomeRuns"] > df_out["AwayRuns"], "H",
np.where(df_out["HomeRuns"] < df_out["AwayRuns"], "A", "T"))
return df_out.reset_index(drop=True)
def aggregate_team_stats(df: pd.DataFrame) -> pd.DataFrame:
teams = pd.Index(sorted(set(df["HomeTeam"]).union(df["AwayTeam"])), name="Team")
stats = pd.DataFrame(index=teams, columns=["W","L","T","RS","RA"], data=0)
for _, r in df.iterrows():
h, a = r["HomeTeam"], r["AwayTeam"]
hr, ar = int(r["HomeRuns"]), int(r["AwayRuns"])
stats.at[h,"RS"] += hr; stats.at[h,"RA"] += ar
stats.at[a,"RS"] += ar; stats.at[a,"RA"] += hr
if hr > ar:
stats.at[h,"W"] += 1; stats.at[a,"L"] += 1
elif hr < ar:
stats.at[a,"W"] += 1; stats.at[h,"L"] += 1
else:
stats.at[h,"T"] += 1; stats.at[a,"T"] += 1
stats = stats.astype(int)
stats["GP"] = stats["W"] + stats["L"] + stats["T"]
stats["WinPct"] = (stats["W"] + 0.5 * stats["T"]) / stats["GP"].replace(0, np.nan)
stats["RunDiff"] = stats["RS"] - stats["RA"]
return stats.reset_index()
def pythagorean(rs: pd.Series, ra: pd.Series, exp: float) -> pd.Series:
rs = rs.clip(lower=0); ra = ra.clip(lower=0)
num = np.power(rs, exp); den = num + np.power(ra, exp)
with np.errstate(divide="ignore", invalid="ignore"):
p = np.where(den > 0, num / den, 0.5)
return pd.Series(p, index=rs.index)
def estimate_home_field_runs(df: pd.DataFrame) -> float:
return float(df["Margin"].mean()) if len(df) else 0.0
def massey(df: pd.DataFrame, cap: float, subtract_home: bool) -> tuple[pd.Series, float]:
teams = sorted(set(df["HomeTeam"]).union(df["AwayTeam"]))
idx = {t:i for i,t in enumerate(teams)}
y = df["Margin"].astype(float).to_numpy()
if cap and cap > 0:
y = np.clip(y, -cap, cap)
h_est = estimate_home_field_runs(df)
if subtract_home:
y = y - h_est
G, N = len(df), len(teams)
A = np.zeros((G+1, N), dtype=float)
for r_i, r in enumerate(df.itertuples(index=False)):
A[r_i, idx[r.HomeTeam]] = 1.0
A[r_i, idx[r.AwayTeam]] = -1.0
A[G, :] = 1.0
y_ext = np.concatenate([y, [0.0]])
r_sol, *_ = np.linalg.lstsq(A, y_ext, rcond=None)
return pd.Series(r_sol, index=teams), (h_est if subtract_home else 0.0)
def elo_expected(ra: float, rb: float) -> float:
return 1.0 / (1.0 + 10.0 ** (-(ra - rb) / 400.0))
def elo_once(df: pd.DataFrame, K: float, H: float, mcap: float, init: dict[str,float]) -> dict[str,float]:
ratings = dict(init)
for _, r in df.iterrows():
h, a = r["HomeTeam"], r["AwayTeam"]
hr, ar = int(r["HomeRuns"]), int(r["AwayRuns"])
margin = hr - ar
Eh = elo_expected(ratings[h] + H, ratings[a])
Sh, Sa = (1.0, 0.0) if hr > ar else ((0.0, 1.0) if hr < ar else (0.5, 0.5))
M = np.log(abs(margin) + 1.0)
if mcap is not None:
M = min(M, mcap)
ratings[h] += K * M * (Sh - Eh)
ratings[a] += K * M * ((1.0 - Sh) - (1.0 - Eh))
return ratings
def elo(df: pd.DataFrame, K=24.0, H=30.0, mcap=2.0, shuffles=20, seed=42) -> pd.Series:
teams = sorted(set(df["HomeTeam"]).union(df["AwayTeam"]))
base = {t: 1500.0 for t in teams}
# baseline in chronological order (Date may be NaT; sort is stable)
df0 = df.sort_values(["Date"]).reset_index(drop=True)
r_first = elo_once(df0, K, H, mcap, base)
rng = np.random.default_rng(seed)
vals = {t: [r_first[t]] for t in teams}
for _ in range(max(0, shuffles-1)):
idx = np.arange(len(df0)); rng.shuffle(idx)
r = elo_once(df0.iloc[idx].reset_index(drop=True), K, H, mcap, base)
for t in teams:
vals[t].append(r[t])
return pd.Series({t: float(np.mean(vals[t])) for t in teams}).sort_index()
def zscore(s: pd.Series) -> pd.Series:
mu, sd = s.mean(), s.std(ddof=0)
return pd.Series(0.0, index=s.index) if (sd == 0 or np.isnan(sd)) else (s - mu) / sd
def main(
inp: str = typer.Option(..., help="Input CSV (season_schedule.csv)"),
out: str = typer.Option(..., help="Output ratings CSV"),
team_id: str = typer.Option(
"names",
help="Use team names or slugs as identifiers (default: names)",
show_default=True,
case_sensitive=False,
prompt=False,
),
final_status: str | None = typer.Option(None, help="Only include games where status == this value (e.g., 'final'). If omitted, any row with scores is included."),
pyexp: float = typer.Option(1.83, help="Pythagorean exponent"),
massey_cap: float = typer.Option(8.0, help="Cap for run margins in Massey"),
no_massey_home_adj: bool = typer.Option(False, help="Disable subtracting estimated home-field runs in Massey"),
elo_k: float = typer.Option(24.0, help="Elo K-factor"),
elo_home: float = typer.Option(30.0, help="Elo home bonus (points)"),
elo_mcap: float = typer.Option(2.0, help="Cap for margin factor ln(|m|+1)"),
elo_shuffles: int = typer.Option(20, help="Random shuffles to average Elo"),
elo_seed: int = typer.Option(42, help="RNG seed for shuffles")
):
team_id = team_id.lower()
# Load games
games = load_games(inp, team_id=team_id, final_status=final_status)
# Aggregates
team = aggregate_team_stats(games)
team["PythagoreanWinPct"] = pythagorean(team["RS"], team["RA"], pyexp)
# Ratings
massey_r, h_runs = massey(games, cap=massey_cap, subtract_home=not no_massey_home_adj)
# Strength of schedule
opps = {t: [] for t in massey_r.index}
for _, r in games.iterrows():
opps[r["HomeTeam"]].append(r["AwayTeam"])
opps[r["AwayTeam"]].append(r["HomeTeam"])
sos_series = pd.Series({t: (float(massey_r[opps[t]].mean()) if opps[t] else 0.0) for t in opps})
elo_r = elo(games, K=elo_k, H=elo_home, mcap=elo_mcap, shuffles=elo_shuffles, seed=elo_seed)
# Merge
out_df = team.set_index("Team")
out_df["MasseyRating"] = massey_r
out_df["EloRating"] = elo_r
out_df["StrengthOfSchedule"] = sos_series
# Composite
Z_r, Z_e, Z_p = zscore(out_df["MasseyRating"]), zscore(out_df["EloRating"]), zscore(out_df["PythagoreanWinPct"])
out_df["CompositeRating"] = 0.45*Z_r + 0.35*Z_e + 0.20*Z_p
out_df = out_df.reset_index()
out_df = out_df[[
"Team","GP","W","L","T","WinPct","RS","RA","RunDiff",
"PythagoreanWinPct","MasseyRating","EloRating","StrengthOfSchedule","CompositeRating"
]].sort_values("CompositeRating", ascending=False)
# Round for readability
for c in ["WinPct","PythagoreanWinPct","MasseyRating","EloRating","StrengthOfSchedule","CompositeRating"]:
out_df[c] = out_df[c].astype(float).round(5)
out_df.to_csv(out, index=False)
print(f"Done. Estimated home-field (runs) used in Massey: {h_runs:.3f}")
print(f"Teams ranked: {len(out_df)} | Games processed: {len(games)}")
print(f"Output -> {out}")
if __name__ == "__main__":
typer.run(main)